Friday, October 10, 2014

Content and Context in Higher Ed

Science is supposed to be about content. Concepts, hypothesis, and theories are used to understand how the world works and to develop technology that is fundamental for the betterment of our society. Many would say that this last is why science is so important, and why we should as a society support its progress. Who could be against the advances of modern medicine, and engineering?
This view of science lead to the assumption that teaching science should be simply the transmission of ideas, the teaching of content. So we can always test that it is happening by a simple question: can the student solve such and such problem? Questions like "what is the temperature if .....?" are the standard questions in any assessment of student knowledge.

In a way this is OK, this will allow the student to be a "problem solver" but, will s/he be a "critical thinker"? I think that this is not enough. If we are not critical thinkers our ability to solve problems will be also impaired.

This week I'm teaching gas behavior in my general chemistry class. The mathematical expression that relates volume, pressure, amount, and temperature is known as the 'ideal gas law" PV = nRT. Working with this formula amounts to simple algebra, should not give much trouble. It looks like there is no context. So why should I talk about Robert Boyle a fellow of the Royal Society who in the XVII century developed what is now known as Boyle's law relating the volume and the pressure of a gas, or Jacques Charles a French aristocrat, member of the Paris Science Academy, who lived through the French Revolution and was probably the first to fly an unmanned balloon full of hydrogen in 1783. Charles Law relates temperature with volume of a gas and even though it was Gay-Lussac who published in 1802, Charles was given credit for his unpublished work.

It seems to me that this honesty in the scientific world has become less of a norm, I'm sad to say.

Then we have Avogadro  (always concerned with the amounts of substances) lived the last part of the XVIII and first half of the XIX centuries. He of course saw the relationship between the amount of gas and the volume. Now we know this relationship as Avogadro's Law.

When in the late 1800's these laws where condensed into one: The Ideal Gas Law PV =nRT
Water vapor engineering was born. And "steam' energy became the driver of the second industrial revolution 1840-1870 by introducing "steam" engines to trains and boats transforming transportation.

Now the question I have is: why should students learn about all the history when learning how to solve problems with PV =nRT? Is the ideal gas law going to change if circumstances change? What can I learn from the fact that many minds where involved in the development of the "law"?

Are the answers to these questions self evident?

No comments:

Post a Comment